import cv2
img = cv2.imread('jack.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faceCascade = cv2.CascadeClassifier('face_detect.html')
faceRect = faceCascade.detectMultiScale(gray, 1.1, 3)
print(len(faceRect))
for (x,y,w,h) in faceRect:
cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0), 2)
cv2.imshow('img',img)
cv2.waitKey(0)
import cv2
import mediapipe as mp
import time
cap = cv2.VideoCapture('VIDEO/1.mp4')
pTime = 0
mpFaceDetection = mp.solutions.face_detection
mpDraw = mp.solutions.drawing_utils
faceDetection = mpFaceDetection.FaceDetection(0.75)
while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = faceDetection.process(imgRGB)
print(results)
if results.detections:
for id, detection in enumerate(results.detections):
# mpDraw.draw_detection(img, detection)
# print(id, detection)
# print(detection.score)
# print(detection.location_data.relative_bounding_box)
bboxC = detection.location_data.relative_bounding_box
ih, iw, ic = img.shape
bbox = int(bboxC.xmin*iw), int(bboxC.ymin*ih), \
int(bboxC.width * iw), int(bboxC.height * ih)
cv2.rectangle(img, bbox, (255, 0, 255), 3)
cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20), cv2.FONT_HERSHEY_PLAIN, 2,
(255, 0, 255), 2)
img = cv2.resize(img, (0, 0), fx=0.7, fy=0.7)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 2)
cv2.imshow('img', img)
cv2.waitKey(1)
import cv2
import mediapipe as mp
import time
class FaceDetector():
def __init__(self, minDetectionCon=0.5):
self.minDetectionCon = minDetectionCon
self.mpFaceDetection = mp.solutions.face_detection
self.mpDraw = mp.solutions.drawing_utils
self.faceDetection = self.mpFaceDetection.FaceDetection(0.75)
def findFaces(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.faceDetection.process(imgRGB)
# print(self.results)
bboxs = []
if self.results.detections:
for id, detection in enumerate(self.results.detections):
bboxC = detection.location_data.relative_bounding_box
ih, iw, ic = img.shape
bbox = int(bboxC.xmin*iw), int(bboxC.ymin*ih), \
int(bboxC.width * iw), int(bboxC.height * ih)
bboxs.append([id, bbox, detection.score])
if draw:
img = self.fancyDraw(img, bbox)
cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20), cv2.FONT_HERSHEY_PLAIN, 2,
(255, 0, 255), 2)
return img, bboxs
def fancyDraw(self, img, bbox, l = 30, t = 5, rt=1):
x ,y, w, h = bbox
x1, y1 = x + w, y + h
cv2.rectangle(img, bbox, (255, 0, 255), rt)
#top left x,y
cv2.line(img, (x, y), (x + l, y), (255, 0, 255), t)
cv2.line(img, (x, y), (x, y + l), (255, 0, 255), t)
# top right x1,y
cv2.line(img, (x1, y), (x1 - l, y), (255, 0, 255), t)
cv2.line(img, (x1, y), (x1, y + l), (255, 0, 255), t)
# top bottom left x,y1
cv2.line(img, (x, y1), (x + l, y1), (255, 0, 255), t)
cv2.line(img, (x, y1), (x, y1 - l), (255, 0, 255), t)
# top bottom right x1,y
cv2.line(img, (x1, y1), (x1 - l, y1), (255, 0, 255), t)
cv2.line(img, (x1, y1), (x1, y1 - l), (255, 0, 255), t)
return img
def main():
cap = cv2.VideoCapture('VIDEO/1.mp4')
pTime = 0
detector = FaceDetector()
while True:
success, img = cap.read()
img, bboxs = detector.findFaces(img)
print(bboxs)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, f'FPS: {int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 2)
img = cv2.resize(img, (0, 0), fx=0.7, fy=0.7)
cv2.imshow('img', img)
cv2.waitKey(1)
if __name__ == '__main__':
main()